Randomized sampling and multiplier-less filtering
نویسنده
چکیده
This thesis considers the benefits of randomization in two fundamental signal processing techniques: sampling and filtering. The first part develops randomized non-uniform sampling as a method to mitigate the effects of aliasing. Randomization of the sampling times is shown to convert aliasing error due to uniform under-sampling into uncorrelated shapeable noise. In certain applications, especially perceptual ones, this form of error may be preferable. Two sampling structures with are developed in this thesis. In the first, denoted simple randomized sampling, non-white sampling processes can be designed to frequency-shape the error spectrum, so that its power is minimized in the band of interest. In the second model, denoted filtered randomized sampling, a pre-filter, post-filter, and the sampling process can be designed to further frequency-shape the error to improve performance. The thesis develops design techniques using parametric binary process models to optimize the performance of randomized non-uniform sampling. In addition, a detailed second-order error analysis, including performance bounds and results from simulation, is presented for each type of sampling. The second part of this thesis develops randomization as a method to improve the performance of multiplier-less FIR filters. Static multiplier-less filters, even when carefully designed, result in frequency distortion as compared to a desired continuous-valued filter. Replacing each static tap with a binary random process is shown to mitigate this distortion, converting the error into uncorrelated shapeable noise. As with randomized sampling, in certain applications this form of error may be preferable. This thesis presents a FIR Direct Form I randomized multiplier-less filter structure denoted binary randomized filtering (BRF). In its most general form, BRF incorporates over-sampling combined with a tapped delay-line that changes in time according to a binary vector process. The time and tap correlation of the binary vector process can be designed to improve the error performance. The thesis develops design techniques using parametric binary vector process models to do so. In addition, a detailed second-order error analysis, including performance bounds, error scaling with over-sampling, and results from simulation, is presented for the various forms of BRF. Thesis Supervisor: Alan V. Oppenheim Title: Ford Professor of Engineering
منابع مشابه
FPGA based Efficient Interpolator design using DALUT Algorithm
Abstract: Interpolator is an important sampling device used for multirate filtering to provide signal processing in wireless communication system. There are many applications in which sampling rate must be changed. Interpolators and decimators are utilized to increase or decrease the sampling rate. In this paper an efficient method has been presented to implement high speed and area efficient i...
متن کاملDesign of the Weak Signal Detection Device Based on Multiplier Technology
In this paper, we present an effective weak-signal detection device to detect the amplitude of a weak signal in additive non-Gaussian noise of unknown level. Instead of using conventional phase lock amplifying and sampling integral, we apply a mixer based on multiplier technology and multilevel filtering technology for weak signals detecting. The whole device consists of a reverse adder, pure r...
متن کاملModified 32-Bit Shift-Add Multiplier Design for Low Power Application
Multiplication is a basic operation in any signal processing application. Multiplication is the most important one among the four arithmetic operations like addition, subtraction, and division. Multipliers are usually hardware intensive, and the main parameters of concern are high speed, low cost, and less VLSI area. The propagation time and power consumption in the multiplier are always high. ...
متن کاملAn Efficient Bit Rate Performance of Serial-serial Multiplier with 1’s Asynchronous Counter
Traditional Serial-Serial multiplier addresses the high data sampling rate. It is effectively considered as the entire partial product matrix with n data sampling cycle for n×n multiplication function instead of 2n cycles in the conventional multipliers. The existing Serial-Serial multiplier is the first bit serial structure. Newly developed serial-serial multiplier design is capable of process...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008